On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.

نویسندگان

  • Youn-Hee Park
  • Do-Hyun Lee
  • Eujin Um
  • Je-Kyun Park
چکیده

Monodispersed lipid vesicles have been used as a drug delivery vehicle and a biochemical reactor. To generate monodispersed lipid vesicles in the nano- to micrometer size range, an extrusion step should be included in conventional hand-shaking method of lipid vesicle synthesis. In addition, lipid vesicles as a drug carrier still need to be improved to effectively encapsulate concentrated biomolecules such as cells, proteins, and target drugs. To overcome these limitations, this paper reports a new microfluidic platform for continuous synthesis of small-sized (∼10 μm) giant unilamellar vesicles (GUVs) containing quantum dots (QDs) as a nanosized model drug. To generate GUVs, we introduced an additional cross-flow to break vesicles into small size. 1,2 - dimyristoyl-sn-glycero - 3 - phosphocholine (DMPC) in an octanol-chloroform mixture was used in the construction of self-assembled membrane. Consequently, we have successfully demonstrated the fabrication of monodispersed GUVs with 7-12 μm diameter containing QDs. The proposed synthesis method of cell-sized GUVs would be highly desirable for applications such as multipurpose drug encapsulation and delivery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using giant unilamellar lipid vesicle micro-patterns as ultrasmall reaction containers to observe reversible ATP synthesis/hydrolysis of F0F1-ATPase directly.

F(0)F(1)-ATPase within chromatophores, which was labeled with pH-sensitive quantum dots, was encapsulated in large unilamellar lipid vesicles (LUVs) through reverse-phase evaporation. Then a microarray of chromatophore-containing LUVs was created using a micro-contact printing (mu-CP) technique. Through controlled dehydration-rehydration of the lipid patterns, a microarray of single chromatopho...

متن کامل

A Stratified Flow-driven Route to Monodisperse Unilamellar Lipid Vesicles

Giant unilamellar vesicles (GUVs) are good models of living cells, owing to their size and lamellarity. Compartmentalization within lipid vesicles has been exploited for the study of membrane behavior, lipid mechanics and a variety of biological processes, though their synthesis is not straightforward. We describe the development of a stratified flow driven microfluidic approach to GUV assembly...

متن کامل

Electroformation of Giant Unilamellar Vesicles on Stainless Steel Electrodes

Giant unilamellar vesicles (GUVs) are well-established model systems for studying membrane structure and dynamics. Electroformation, also referred to as electroswelling, is one of the most prevalent methods for producing GUVs, as it enables modulation of the lipid hydration process to form relatively monodisperse, defect-free vesicles. Currently, however, it is expensive and time-consuming comp...

متن کامل

Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks.

We demonstrate the contactless generation of lipid nanotube networks by means of thermally induced migration of flat giant unilamellar vesicles (FGUVs), covering micro-scale areas on oxidized aluminum surfaces. A temperature gradient with a reach of 20 μm was generated using a focused IR laser, leading to a surface adhesion gradient, along which FGUVs could be relocated. We report on suitable l...

متن کامل

Unilamellar vesicle formation and encapsulation by microfluidic jetting.

Compartmentalization of biomolecules within lipid membranes is a fundamental requirement of living systems and an essential feature of many pharmaceutical therapies. However, applications of membrane-enclosed solutions of proteins, DNA, and other biologically active compounds have been limited by the difficulty of forming unilamellar vesicles with controlled contents in a repeatable manner. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electrophoresis

دوره 37 10  شماره 

صفحات  -

تاریخ انتشار 2016